

Equation, satisfies, natural numbers, whole numbers, integers, positive, negative, collection, rational numbers, operations, closure, property, subtraction, multiplication, division, product, solution, commutative, commutativity, associative, associativity, identity, additive identity, multiplicative identity, reciprocal, distributivity, distributive property, defined, undefined, remarks, expression, compute, add, subtract, multiply,

verify, calculate, revisit, observe, explore, concept, verify, simplify, denominator, numerator, mean, countless, between, property table, expression, order, brackets, parentheses, evaluate, closed, not closed, applicable, holds true, general rule, LCM, discuss, think, distributivity, rational form, intermediate, calculation, simplified, common denominator, compare, check, formulate

Formula / Property	Expression	Condition
Closure Property (Addition)	$a + b = b + a$	$a, b \in \text{Rational Numbers}$
Closure Property (Subtraction)	$a - b = \text{Rational Number}$	$a, b \in \text{Rational Numbers}$
Closure Property (Multiplication)	$a \times b = \text{Rational Number}$	$a, b \in \text{Rational Numbers}$
Closure Property (Division)	$a \div b = \text{Rational Number}$	$b \neq 0$
Commutative Property (Addition)	$a + b = b + a$	$a, b \in \text{Rational Numbers}$
Commutative Property (Multiplication)	$a \times b = b \times a$	$a, b \in \text{Rational Numbers}$
Associative Property (Addition)	$a + (b + c) = (a + b) + c$	$a, b, c \in \text{Rational Numbers}$
Associative Property (Multiplication)	$a \times (b \times c) = (a \times b) \times c$	$a, b, c \in \text{Rational Numbers}$
Additive Identity	$a + 0 = a$	$a \in \text{Rational Numbers}$
Multiplicative Identity	$a \times 1 = a$	$a \in \text{Rational Numbers}$
Distributive Property over Addition	$a \times (b + c) = a \times b + a \times c$	$a, b, c \in \text{Rational Numbers}$
Distributive Property over Subtraction	$a \times (b - c) = a \times b - a \times c$	$a, b, c \in \text{Rational Numbers}$
Mean of Two Rational Numbers	$(a + b)/2$	$a, b \in \text{Rational Numbers}$

Hemdon.com

algebraic, expressions, equations, variables, equality, expression, power, restrict, balanced, transposing, mathematical, operations, denominators, simplified, combining, occasionally, suitable, utility, diverse, applications, perimeters,

combination, currency, simplify, brackets, required, multiplying, solution, LCM (least common multiple), checking, reducing, equality, involving, rearranging, fraction, simplified, transposed, expressions.

Formula / Step	Expression
Linear Equation Form	$ax + b = c$
Transposing constant	$ax = c - b$
Solving for variable	$x = (c - b)/a$
Equation with variable on both sides	$ax + b = dx + e$
Move variables to one side	$ax - dx = e - b$
Solving for variable	$x = (e - b)/(a - d)$
Clear fractions by LCM	Multiply both sides by LCM of denominators
Equation with brackets	$a(bx + c) = d$
Expand brackets	$abx + ac = d$
Equation with decimals	$0.25(4f - 3) = 0.05(10f - 9)$
Simplify both sides	Perform all arithmetic and combine like terms
Check solution	Substitute value of x into original equation

Hemdon.com

quadrilateral, polygon, simple curve, simple closed curve, plane surface, line segment, side, vertex, convex polygon, concave polygon, regular polygon, irregular polygon, trapezium, isosceles trapezium, kite, parallelogram, rhombus, rectangle, square, diagonal, interior angle, exterior angle, opposite sides, adjacent sides, opposite angles, adjacent angles, supplementary angles, congruent triangles, ASA congruency, SSS

congruency, SAS congruency, transversal, interior opposite angles, bisect, perpendicular bisector, mid-point, perimeter, right angle, folding symmetry, rotation symmetry, equal diagonals, unequal diagonals, angle bisector, set-square, instrument box, n-gon, regular hexagon, regular octagon, regular 20-gon, complete turn, visual verification, geometric construction, paper folding.

Concept	Formula or Property
Sum of Exterior Angles of any polygon	360°
Each exterior angle of a regular polygon	360° / number of sides
Each interior angle of a regular polygon	180° - Exterior Angle
Number of sides from given exterior angle	360° / Exterior Angle
Number of sides from given interior angle	360° / (180° - Interior Angle)
Perimeter of parallelogram	2 × (Length + Breadth)
Property of Parallelogram	Opposite sides and angles are equal, Diagonals bisect each other
Angles in Parallelogram	Adjacent angles are supplementary
Diagonals in Parallelogram	Diagonals bisect each other
Diagonals in Rhombus	Perpendicular bisectors of each other
Diagonals in Rectangle	Equal in length and bisect each other
Diagonals in Square	Equal, bisect each other, and are perpendicular

Hemdon.com

information, interpretation,
pictograph, bar graph,
proportional, simultaneously,
deteriorated, performance,
sector, proportion, expenditure,
percentage, surveyed, flavours,
appropriate, representation,
statistics, observations,
frequency, outcomes,
experiment, randomly,
probability, equally, tally,
fraction, spinner,
meteorological, predictions,
uniformly, circular, convenient,

angle, protractor, segments,
preferred, graphical, analysis,
central, statistics, pie chart,
organise, meaningful, infer,
likelihood, identical,
observation, characteristics,
trends, shuffled, systematically,
distribution, denote,
symmetrical, calculation,
estimation, assumption,
approximate, experimenter,
inference

Topic	Formula	Explanation
Pie Chart	$\text{Central Angle} = (\text{Category Value} / \text{Total Value}) \times 360^\circ$	Used to find the angle of each sector in a pie chart.
Probability	$\text{Probability of an event} = (\text{Number of favourable outcomes}) / (\text{Total number of outcomes})$	Used when all outcomes are equally likely.
Proportion in Circle Graph	$\text{Fraction of circle} = (\text{Number of hours/activity value}) / (\text{Total hours/whole value})$	Used to calculate fraction of whole represented in pie chart.
Scale in Pictograph	$1 \text{ symbol} = X \text{ units}$	Used to interpret symbols in a pictograph.
Comparison in Bar Graph	$\text{Height} \propto \text{Value}$	Height of each bar is proportional to the value it represents.

Square number, perfect square, square root, triangular number, odd numbers, even numbers, unit digit rule, Pythagorean triplet, prime factorisation, long division method, repeated subtraction, square root symbol, square area, Pythagoras theorem,

difference of squares, estimating square roots, decimal bar placement, LCM based square, not perfect square, successive squares pattern, consecutive odd numbers.

Formula Name	Expression
Area of a square	$\text{side} \times \text{side} = \text{side}^2$
Perfect square number	$m = n^2$ (where m, n are natural numbers)
Number between two square numbers	$(n + 1)^2 - n^2 = 2n + 1$
Sum of first n odd numbers	$1 + 3 + 5 + \dots + (2n - 1) = n^2$
Square of number ending in 5	$(10a + 5)^2 = 100a(a + 1) + 25$
Product of $(a - 1)$ and $(a + 1)$	$(a - 1)(a + 1) = a^2 - 1$
Pythagorean triplet formula	$2m, m^2 - 1, m^2 + 1$ (for $m > 1$)
Square root as inverse of square	If $a^2 = b$, then $\sqrt{b} = a$
Finding square root using prime factors	Group primes in pairs, take one from each pair
Square root by repeated subtraction	Subtract successive odd numbers till you reach 0
Estimate digits in square root	If n-digit number: root has $n/2$ digits (even) or $(n+1)/2$ (odd)
Square of $(a + b)$	$(a + b)^2 = a^2 + 2ab + b^2$
Diagonal of square	$\sqrt{(\text{side}^2 + \text{side}^2)} = \text{side}\sqrt{2}$
Number of non-square numbers between n^2 and $(n+1)^2$	$2n$
Square root of decimal	Put bar on digits in pairs and apply division method

geniuses, mathematician, expressed, dimensions, geometry, obtained, consecutive, pattern, factorisation, consecutive, prime, factor, multiplication, multiplication, triplets, smallest, multiplied, quotient, cuboids, operation, inverse, denote, inference, method, digits, perfect, symbol, reprint, discussed, interesting, observed,

Ramanujan, Hardy, smallest, volume, product, breadth, height, appears, integer, appears, appears, factorisation, appearing, concluding, observe, individual, grouping, concluding, bracketed, cuboid, determine, original, expression, expressed

Topic	Formula
Cube of a Number	$n^3 = n \times n \times n$
Cube Root	$\sqrt[3]{x} = y$, if $y^3 = x$
Cube of 2-digit Numbers	Can have 3 to 7 digits
Cubes from 1 to 10	$1^3 = 1, 2^3 = 8, \dots, 10^3 = 1000$
Cubes from 11 to 20	$11^3 = 1331, \dots, 20^3 = 8000$
Consecutive Odd Numbers	Sum of n consecutive odd numbers = n^3
Pattern Formula 1	$n^3 - (n-1)^3 = 1 + n \times (n-1) \times 3$
Perfect Cube Test	All prime factors must appear in multiples of 3
Cube Root by Prime Factorisation	Group identical prime factors in triples
Volume of Cuboid	$V = l \times b \times h$
Perfect Cube by Multiplication	Multiply by missing primes to complete triplets
Perfect Cube by Division	Divide by extra primes to retain triplets
Cube Root Identity	$\sqrt[3]{(a^3 \times b^3 \times c^3)} = a \times b \times c$
Examples	E.g., $\sqrt[3]{3375} = \sqrt[3]{(3^3 \times 5^3)} = 15$

Hemdon.com

ratios, percentages, unitary method, quantity, transportation, expenses, estimation, discount, marked price, sale price, reduction, promote, value added tax, VAT, goods, services, GST, levied, supply, sales tax, principal, interest, per annum, borrowed, compounded, annually, simple interest, compound interest, amount, formula, deduction, increase, decrease, depreciation, population, bacteria, appreciation, estimation,

inclusive, overhead expenses, cost price, selling price, percentage, approximation, calculation, survey, distributed, refreshed, compounded annually, alternate method, deduction, total cost, derived formula, direct formula, taxable amount, inclusive price, mathematical expression, logical steps, financial planning, real-life application, recurring value, growth rate, depreciation rate.

Topic	Formula
Ratio	$\text{Ratio} = a : b = a/b$
Percentage	$\text{Percentage} = (\text{Part}/\text{Whole}) \times 100$
Discount	$\text{Discount} = \text{Marked Price} - \text{Sale Price}$
Discount %	$\text{Discount \%} = (\text{Discount} / \text{Marked Price}) \times 100$
Sale Price	$\text{Sale Price} = \text{Marked Price} - \text{Discount}$
Sale Price (with %)	$\text{Sale Price} = \text{Marked Price} \times (1 - \text{Discount \%}/100)$
Marked Price	$\text{Marked Price} = \text{Sale Price} / (1 - \text{Discount \%}/100)$
Sales Tax	$\text{Sales Tax} = (\text{Sales Tax \%} \times \text{Selling Price}) / 100$
Total Bill with Tax	$\text{Total Bill} = \text{Selling Price} + \text{Sales Tax}$
GST	$\text{GST} = \text{GST \%} \times \text{Price} / 100$
Original Price (including GST)	$\text{Original Price} = \text{Price including GST} / (1 + \text{GST \%}/100)$
Simple Interest	$\text{SI} = (\text{Principal} \times \text{Rate} \times \text{Time}) / 100$
Compound Interest	$\text{CI} = \text{A} - \text{P}$
Amount (CI)	$\text{A} = \text{P} \times (1 + \text{R}/100)^n$
Population Growth	$\text{Population} = \text{Present Population} \times (1 + \text{Growth Rate}/100)^{\text{Years}}$
Depreciation	$\text{Value} = \text{Present Value} \times (1 - \text{Depreciation Rate}/100)^{\text{Years}}$
Overhead Expenses	$\text{Cost Price} = \text{Buying Price} + \text{Overhead Expenses}$
Percentage Change	$\text{Percentage Change} = ((\text{New Value} - \text{Original Value}) / \text{Original Value}) \times 100$

Hemdon.com

algebraic, expressions, identities, subtraction, coefficient, inverse, polynomial, monomial, binomial, trinomial, distributive, commutative, associative, exponent, multiplication, rectangle, breadth, variable, constant, evaluation, simplify, terms, dimensions, rectangular, product, quantity, principal, interest, volume, systematically, algebraically, coefficient, calculation, expression, negative, power, additive, notation, simplify,

subtraction, similarly, separately, non-zero, observation, situations, multiplication, distributive, combination, factors, associative, representation, terminology, resultant, simplification, individually, combining, multiplication, trinomial, multiplying, simplification, evaluation, distributive, coefficient, commutative, identity.

Algebraic Expressions and Identities

Concept	Rule/Method	Formula Example
Addition of Algebraic Expressions	Combine like terms	$7x^2 - 4x + 5 + 9x - 10 = 7x^2 + 5x - 5$
Subtraction of Algebraic Expressions	Additive inverse and combine	$7x^2 - 4xy + 8y^2 + 5x - 3y - (5x^2 - 4y^2 + 6y - 3) = 2x^2 - 4xy + 12y^2 + 5x - 9y + 3$
Multiplying Monomials	Multiply coefficients and add powers	$5x \times 4x^2 = 20x^3$
Multiplying Monomials (multiple)	Multiply all terms sequentially	$2x \times 5y \times 7z = 70xyz$
Volume of Rectangular Box	$l \times b \times h$	$2ax \times 3by \times 5cz = 30abcxyz$
Area of Rectangle	$l \times b$	$3x \times 5y = 15xy$
Monomial \times Binomial	Distributive Law	$3x \times (5y + 2) = 15xy + 6x$
Monomial \times Trinomial	Distributive Law	$3p \times (4p^2 + 5p + 7) = 12p^3 + 15p^2 + 21p$
Binomial \times Binomial	Distributive Law with simplification	$(x - 4)(2x + 3) = 2x^2 - 5x - 12$
Binomial \times Trinomial	Distributive Law with simplification	$(a + b)(2a - 3b + c) = 2a^2 - ab - 3b^2 + 4bc - ac$
Expression Evaluation	Substitute and simplify	$x(x - 3) + 2 \text{ for } x = 1 \rightarrow 0$
Simplifying Polynomial Products	Combine like terms	$4y(3y^2 + 5y - 7) + 2(y^3 - 4y^2 + 5) = 14y^3 + 12y^2 - 28y + 10$

Hemdon.com

perimeter, trapezium, polygon, diagonal, perpendiculars, trapezium-shaped, quadrilateral, dimensions, rhombus, altitude, hexagon, congruent, cylindrical, cuboidal, net (of a cube), lateral, rectangular, circumference, right

circular cylinder, identical, volume, capacity, cubical, perpendicular, expression, deduce, approximation, rectangular strip, solid, measurement, almirah, unit cubes, godown, overlapping, base area, capacity, plaster, reservoir.

Concept	Formula
Area of a trapezium	$\frac{1}{2} \times h \times (a + b)$
Area of a rhombus (using diagonals)	$\frac{1}{2} \times d_1 \times d_2$
Area of a rhombus (using base and height)	base \times height
Area of a rectangle	length \times breadth
Area of a triangle	$\frac{1}{2} \times \text{base} \times \text{height}$
Total surface area of a cuboid	$2(lb + bh + hl)$
Lateral surface area of a cuboid	$2h(l + b)$
Total surface area of a cube	$6l^2$
Lateral surface area of a cube	$4l^2$
Total surface area of a cylinder	$2\pi r(r + h)$
Lateral surface area (curved) of a cylinder	$2\pi rh$
Area of two circular bases of cylinder	$2\pi r^2$
Volume of a cuboid	$l \times b \times h$
Volume of a cube	l^3
Volume of a cylinder	$\pi r^2 h$
Volume of reservoir	Base Area \times Height
Capacity in litres	Volume in $\text{cm}^3 \div 1000$
Perimeter of base of cuboid	$2(l + b)$
Surface area from net of cuboid	Sum of area of all six faces
Height from volume and base area	Volume \div Base Area

Hendon.Com

Exponent, powers, base, index, standard form, usual form, multiplicative inverse, exponential form, expanded form, notation, negative exponent, non-zero integer, positive exponent, natural number, laws of exponents, reciprocal, simplification, scientific notation,

comparison, large number, small number, diameter, mass, thickness, radius, red blood cell, plant cell, propellant, solar eclipse, coulomb, micron, bacteria, evaluate, simplify, convert, subtract, multiply, divide, expression, stacked, expanded notation.

Formula	Result
$a^m \times a^n$	$a^{(m+n)}$
$a^m \div a^n$	$a^{(m-n)}$
$(a^m)^n$	$a^{(m \times n)}$
a^0	1 (if $a \neq 0$)
a^{-m}	$1 / a^m$ (if $a \neq 0$)
$(a \times b)^m$	$a^m \times b^m$
$(a / b)^m$	a^m / b^m (if $b \neq 0$)
Standard form of small number	$a \times 10^{(-n)}$
Standard form of large number	$a \times 10^n$
Multiplicative Inverse of a^m	$a^{-m} = 1 / a^m$
$(a^m)^n$	$a^{(m \times n)}$
$(a \times b)^m$	$(a^m) \times (b^m)$
$(a / b)^m$	$(a^m) / (b^m)$

proportion, variation,
corresponding, consumption,
constant, proportional,
ingredients, simultaneously,
quantities, inversely, directly,
miniature, representation,
approximate, intervals, scale
observed, situations,
predetermined, relationship,
calculate, rectangular,
proportionality, estimation,
expenditure, assumption,
multiplicative, reciprocal,
formulation, comparison,

distribution, enlarged,
measurement, assumptions,
mathematical, equations,
uniformly, miniature,
transformation, consecutive,
horizontal, vertical, alternate,
estimation, requirement,
configurations, quantity,
variables, tabulate,
spontaneously, simultaneously,
measurable, inversely, enlarge,
uniformly, duration, fixed,
altitude, assumption.

Topic	Formula
Direct Proportion	$x/y = k$ (constant)
Direct Proportion	$x_1/x_2 = y_1/y_2$
Direct Proportion	$x = ky$
Inverse Proportion	$x * y = k$ (constant)
Inverse Proportion	$x_1 * y_1 = x_2 * y_2$
Inverse Proportion	$x_1/x_2 = y_2/y_1$
Simple Interest	$SI = (P \times R \times T) / 100$
Compound Interest	$CI = P(1 + R/100)^T - P$
Map Scale	Map Distance / Actual Distance = 1 / Scale
Perimeter of Square	$P = 4 \times L$
Area of Square	$A = L \times L$
Speed, Time, Distance	Distance = Speed \times Time
Angle between spokes	Angle = $360^\circ / \text{Number of spokes}$

factors, prime, irreducible, algebraic, expressions, common, distributive, identity, regrouping, coefficient, polynomial, monomial, trinomial, identity, numerical, variable, systematic, inverse, quotient, remainder, dividend, divisor, cancellation,

applicable, factorisation, rearrangement, comparison, negative, perfect, squares, cancellation, denominator, numerator, operations, simplification, applicable, trial, observation, terms, multiplication, cancellation.

Formula Type	Formula
Algebraic Identity	$(a + b)^2 = a^2 + 2ab + b^2$
Algebraic Identity	$(a - b)^2 = a^2 - 2ab + b^2$
Algebraic Identity	$(a + b)(a - b) = a^2 - b^2$
Algebraic Identity	$(x + a)(x + b) = x^2 + (a + b)x + ab$
Factorisation Method	Common Factor: $ab + ac = a(b + c)$
Factorisation Method	Regrouping: $ax + ay + bx + by = (a + b)x + (a + b)y = (a + b)(x + y)$
Division Rule	$(a \times b) \div a = b$
Division Rule	$(ax + bx) \div x = a + b$
Factorising Quadratics	$x^2 + px + q = (x + a)(x + b)$, where $a + b = p$ and $ab = q$
Special Case	$m^4 - 256 = (m - 4)(m + 4)(m^2 + 16)$
Division of Polynomials	Dividend = Divisor \times Quotient
General Division Rule	Dividend = Divisor \times Quotient + Remainder

graphical, representation,
numerical, continuously,
temperature, horizontal,
vertical, coordinate, segment,
steadily, consistent, reliable,
comparison, variable,
independent, dependent,
illustrative, estimate,
corresponding, approximate,
laboratory, measurable,
measurable, deposited,
investment, population,
manufacturing, forecast,

difference, experimental,
suburban, merchant, situation,
variation, origin, perimeter,
determine, directly, distance,
approximate, visual, interpret,
observation, electricity,
consumption, principal,
interest, deposited, constant,
relation, mathematical,
regularly, proportion, data,
table, axis, square, unbroken.

Concept	Formula	Description
Temperature Difference	$\Delta T = T_2 - T_1$	Change in temperature over time
Speed	Speed = Distance / Time	Used in distance-time graphs
Distance	Distance = Speed × Time	Used when speed is constant
Simple Interest	$SI = (P \times R \times T) / 100$	Where P is Principal, R is Rate (%), T is Time
Perimeter of a Square	$P = 4 \times \text{side}$	Used in graph of side vs. perimeter
Area of a Square	$A = \text{side}^2$	Used in graph of side vs. area
Linear Relationship	$y = mx + c$	Straight line equation (used for direct variation graphs)
Direct Variation	$y \propto x$ or $y = kx$	Used when one quantity increases with the other